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ON THE QUASI-STEADINESS HYPOTHESIS AS APPLIED

TO GAS EXHAUSTION FROM A RECEIVER

UDC 533.6.011V. A. Arkhipov, A. P. Berezikov, and V. F. Trofimov

A semi-empirical method of determining the stabilization time for a quasi-steady mode of gas ex-
haustion from a receiver after sudden opening of the nozzle and the time evolution of the real flow
rate at the stage of the transitional process are considered. The numerical solution of the equations
of exhaustion gas dynamics in a two-dimensional formulation and the results of model experiments
demonstrated that the method can be used to estimate the conditions of applicability of the quasi-
steadiness hypothesis and to determine the discharge coefficient of the nozzle with controlled accuracy.
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One of the central assumptions in mathematical modeling of transitional processes in a semi-closed volume
within the framework of the thermodynamic (zero-dimensional) approach is the hypothesis of exhaustion quasi-
steadiness [1]. According to this hypothesis, no matter how rapidly the governing parameters (e.g., the nozzle-throat
area Fth) change, the mass flow rate of the gas through the nozzle per second corresponds to instantaneous values
of these parameters and is determined by the quasi-steady dependence on time, which has the following form for
the supercritical flow mode:

Gqst(t) = ϕ0p(t)Fth(t)Γ(k)/
√

χRT (t). (1)

Here p(t) and T (t) are the current values of stagnation pressure and temperature in the receiver (averaged over the
free volume of the receiver V ), Γ(k) =

√
k(2/(k+1))(k+1)/(2(k−1)), k is the ratio of specific heats, χ is the coefficient

of heat losses (in what follows, it is assumed that χ = 1, i.e., the receiver walls are thermally insulated), R is the
gas constant of exhaustion products, and ϕ0 is the discharge coefficient of the nozzle.

The physical meaning of the hypothesis is that the velocity of downstream propagation of disturbances is
significantly greater than the rate of variation of parameters at an arbitrary point of the flow. The use of this
hypothesis appreciably simplifies problem formulation and interpretation of results in theoretical and experimental
investigations of transitional processes in various engineering devices. The practical importance of the hypothesis,
however, is determined by careful justification of the conditions and limits of its applicability. These issues have
been studied most extensively as applied to shock starting of nozzles and processes in hotshot wind tunnels [2–7].
Methods of numerical calculation of a one- or two-dimensional unsteady flow generated by a sudden breakdown of
the membrane separating the receiver from the nozzle or from the ambient medium were used in most papers. The
initial stage of exhaustion from an instantaneously opened nozzle is accompanied by complicated wave phenomena,
which were analyzed in detail in [6]. The unsteady disturbances decay with time, which finally ensures a quasi-steady
mode of exhaustion.

Note, in the papers mentioned above, the calculations were performed for particular values of regime and
geometric parameters of the problem; the values of exhaustion quasi-steadiness stabilization times refer to the
conditions considered. The issues of comparison of unsteady and quasi-steady approaches are described in much
detail in [5, 7]. Zvegintsev and Shashkin [7] estimated the difference in pressures in the receiver, which were
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calculated for both problem formulations with exhaustion from a cylindrical receiver with a cross-sectional area Fch

through a nozzle with a throat area Fth, which was mounted in one of the butt-end faces of the receiver. For small
values of the parameter α = Fth/Fch, we have

εP =
punst − pqst

pqst
=

[
1 + β1

α2t̄

1 + β2
2 t̄

]−2k/(k−1)

− 1,

where

β1 =
(k + 1)(k − 1)

4

( 2
k + 1

)3(k+1)/(2(k−1))

, β2 =
k − 1

2

( 2
k + 1

)(k+1)/(2(k−1))

,

t̄ = t/B, B = V/(a0Fth), and a0 is the velocity of sound based on the initial values of gas parameters in the receiver.
Based on numerical calculations of a one-dimensional unsteady flow in a hotshot wind tunnel, Zvegintsev and

Shashkin [7] analyzed the conditions of applicability of the quasi-steadiness hypothesis for various nozzle geometries.
It was shown that the process of nozzle starting includes propagation of the first rarefaction wave in the chamber
during the time t1 and a system of shock waves in the nozzle during the time t2. The run duration is determined
by the greater time (t1 or t2). To approximately estimate the time of nozzle starting tn, it was suggested to use the
expressions

t1 = 2Lch/a0, t2 = 2Ln/a0,

where Lch and Ln are the chamber and nozzle lengths, respectively.
The estimates obtained by the above-given formulas show that the quasi-steady flow stabilization time is

t ≈ 10−2–10−4 sec, i.e., the applicability of the quasi-steadiness hypothesis is validated for most problems of practical
importance associated with investigations of transitional processes.

In some cases, however, it is necessary to take into account exhaustion unsteadiness, if the characteristic times
of internal processes in the chamber are commensurable with tn. As an example, we can mention problems associated
with unsteady combustion of gases or condensed substances in a semi-closed volume when the characteristic times
of chemical reactions are small enough [8]. In this case, one should know both the time of stabilization of the
quasi-steady exhaustion mode and the time evolution of the flow rate in transitional processes (e.g., in the case of
pressure release in a rocket engine). Numerical computations of such problems should be normally performed in a
two-dimensional formulation with allowance for particular geometry with a rather fine grid.

In the present paper, we consider a semi-empirical method for determining the stabilization time of the
quasi-steady mode of gas exhaustion from the receiver after sudden opening of the nozzle and also for determining
the real flow rate G(t) at the stage of the transitional process. In addition, this method allows one to determine the
discharge coefficient of the nozzle with controlled accuracy. The method is based on measuring the time evolution
of pressure p(t) in the case of adiabatic exhaustion from the receiver through the nozzle.

The system of equations in variables averaged over the receiver volume has the form

V
dρ

dt
= −G,

p

ρk
= const, p = ρRT, (2)

where ρ is the gas density in the receiver.
The initial conditions are G = 0, p = p0, and T = T0.
We denote the ratio of the real flow rate to the quasi-steady value determined by Eq. (1) as g(t):

g(t) = G(t)/Gqst(t).

In the course of exhaustion, the value of g(t) changes and reaches g(t) = 1 when the quasi-steady mode is reached.
The first equation of system (2) acquires the form

V
dρ

dt
= −ϕ0gpFth

Γ(k)√
RT

. (3)

The quantity ϕ(t) ≡ ϕ0g(t) in the quasi-steady exhaustion mode equals the discharge coefficient of the
nozzle ϕ0. In the case of adiabatic discharge from a semi-closed volume through the nozzle, Eq. (3) with allowance
for (2) can be presented in the form

d

dt

( p

p0

)
= −ϕ

k

tch

( p

p0

)(3k−1)/(2k)

,
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where tch = V/(FthΓ(k)
√

RT0) is the characteristic exhaustion time. This equation yields the expression for
determining ϕ(t):

ϕ(t) = − tch
k

(p(t)
p0

)(1−3k)/(2k) d

dt

(p(t)
p0

)
. (4)

Here p(t) is the experimentally measured dependence of pressure in the receiver on time.
We present Eq. (4) in the form

ϕ(t) =
d

dt
f(t),

where
f(t) =

2
k − 1

tch

[( p0

p(t)

)(k−1)/(2k)

− 1
]
. (5)

The problem of determining ϕ(t) reduces to finding the derivative of the experimental function (5). Numerical
differentiation of experimental functions is an ill-posed problem, and smoothing has to be performed before solving
this problem. This is done either by a smoothing spline or by a function whose form is chosen on the basis of a
priori information on properties of the problem solution; the unknown parameters are chosen by the least squares
technique. To determine the form of the functional dependence ϕ(t), we supplement system (2) by the equation

dG(t)
dt

= −G(t)−Gqst(t)
tn

, (6)

where tn is the characteristic time of stabilization of the quasi-steady exhaustion mode.
We introduce the dimensionless variables

τ = t/tch, x = p/p0, y = G/G0,

where G0 is determined by formula (1): G0 = ϕ0p0FthΓ(k)/
√

RT0. In the dimensionless form, system (2) with
allowance for (6) reduces to

dx

dτ
= −kx(k−1)/ky, ε

dy

dτ
= x− x(k−1)/(2k)y, (7)

where ε = tn/tch is a small parameter.
The initial conditions are x(0) = 1 and y(0) = y0.
System (7) is singularly disturbed. To solve this system, we use the method of composite expansions of the

boundary functions [9]; the solution has the form

x(τ, ε) = X(τ, ε) + u(ξ, ε), y(τ, ε) = Y (τ, ε) + v(ξ, ε),

where ξ = τ/ε = t/tn, X and Y refer to the external solution and u and v refer to the internal solution. The
asymptotic expansions for X, Y , u, and v are sought as the series

X(τ, ε) =
∞∑

n=0

εnXn(τ), Y (τ, ε) =
∞∑

n=0

εnYn(τ), u(ξ, ε) =
∞∑

n=0

εnun(ξ), v(ξ, ε) =
∞∑

n=0

εnvn(ξ).

In seeking the solution, we confine ourselves to the main term of the asymptotic expansion for X and Y

and two first terms of the asymptotic series for u and v. The regular part of the solution (corresponding to the
quasi-steady mode) is written as

X0 = (1 + (k − 1)τ/2)−2k/(k−1), Y0 = (1 + (k − 1)τ/2)−(k+1)/(k−1),

and the internal solution is

u(ξ, ε) = u0 + u1ε = εk(1− y0)(1− e−ξ), v(ξ, ε) = v0 + v1ε = −(1− y0) e−ξ .

Thus, we have

x(τ, ε) = (1 + (k − 1)τ/2)−2k/(k−1) + εk(1− y0)(1− e−τ/ε),

y(τ, ε) = (1 + (k − 1)τ/2)−(k+1)/(k−1) − (1− y0) e−τ/ε .
(8)
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In the dimensional form, the second equation of system (8) for y0 = 0 (instantaneous opening of the nozzle)
becomes

G(t) = G0

[(
1 +

k − 1
2

t

tch

)−(k+1)/(k−1)

− e−t/tn
]
,

and the function ϕ(t) can be presented in the form

ϕ(t) = ϕ0

[
1−

(
1 +

k − 1
2

t

tch

)(k+1)/(k−1)

e−t/tn
]
.

Stabilization of the quasi-steady exhaustion mode proceeds during the characteristic time tn; therefore (with
allowance that tn � tch), we obtain

ϕ(t) = ϕ0[1− e−t/tn ]. (9)

At the moment of nozzle opening, the discharge coefficient of the gas is assumed to be zero ϕ(0) = 0.
Then, the discharge coefficient monotonically increases to its steady value ϕ0 with the characteristic time tn. Note,
for ϕ0 = const and adiabatic exhaustion, the function f(t) is linear. Approximation (9) for ϕ(t) means that the
experimental dependence f(t) is approximated by the function

f(t) =

t∫
0

ϕ(t) dt = ϕ0{t− tn[1− e−t/tn ]}. (10)

To find ϕ0 and tn, we use the least squares technique, which minimizes the functional

S =
n∑

i=1

[
fi − ϕ0{ti − tn[1− e−t/tn ]}

]2

,

where f(ti) are calculated by formula (10) for the measured values of pi. Dependence (10) is nonlinear with respect
to the parameter tn; therefore, iterations with respect to this parameters were performed until convergence was
reached.

For tn � tch, the function f(t) is approximated by a straight line, which allows us to simplify the procedure
of finding the discharge coefficient. It is sufficient to use two points on the pressure-release curve: at the beginning
(t1, p1) and at the end (t2, p2) of the process. For a linear dependence f(t), the tangent of its angle of inclination
is found as the first difference:

ϕ0 =
f(t2)− f(t1)

t2 − t1
=

tch
t2 − t1

2
k − 1

[(p0

p2

)(k−1)/(2k)

−
(p0

p1

)(k−1)/(2k)]
.

The accuracy of determining ϕ0 and tn by the method considered depends on the measurement error of
the initial parameters (pressure in the receiver) and on the error of approximation of the derivative by the finite
difference. We can show that the relative error of determining the discharge coefficient δϕ0 is related to the absolute
error of pressure measurement ∆p by the formula

δϕ0 ≈ max
(k − 1

2k

∆p

p2
,
∣∣∣2 f1 − 2〈f〉+ f2

f2 − f1

∣∣∣),

where f1, 〈f〉, and f2 are determined for the times t1, 〈t〉 = (t1 + t2)/2, and t2. In choosing the value of p2 =
(k − 1)p0/(2k), the relative measurement error of the discharge coefficient δϕ0 coincides with the relative error of
pressure measurement δp0, which can be, apparently, considered as the optimal condition. Since the value of tn
is determined by the inflection point on the curve f(t), the error of determining the characteristic time tn also
corresponds to the error of pressure measurement. If standard transducers are used (e.g., of the LKh series), the
error of determining tn is within 5–10%.

Dependence (9) was verified numerically. An unsteady axisymmetric flow of an inviscid heat-non-conducting
gas with constant specific heats in the computational domain of the experimental setup (Fig. 1) after sudden opening
of the section FF1 was considered.

The laws of conservation of mass, momentum, and energy in the integral form are
d

dt

∫ ∫
S

ρr dz dr +
∮
C

ρr(uz dr − ur dz) = 0,
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Fig. 1. Layout of the experimental setup and computational domain: 1) receiver;
2) nozzle; 3) pressure transducer; 4) burndown plug.

0.2

0.2 0.4 0.6 0.8

0.4

0.6

0 t, msec

f

43

2
1

Fig. 2. Stabilization of the quasi-steady exhaustion mode: curves 1–3 show the results of numerical
calculations for 16×4 grid (1), 64×16 grid (2), and 256×64 grid (3); curve 4 shows the data obtained
by the semi-empirical method (dth = 15.2 mm, p0 = 4.84 MPa, and 〈dp/dt〉 = 2 · 102 MPa/sec).

d

dt

∫ ∫
S

ρuzr dz dr +
∮
C

r[(p + ρu2
z) dr − ρuruz dz] = 0,

d

dt

∫ ∫
S

ρurr dz dr +
∮
C

r[ρuzur dr − (p + ρu2
r) dz] =

∫ ∫
S

p dz dr,

d

dt

∫ ∫
S

ρ(2e + q2)r dz dr +
∮
C

r{[2puz + ρuz(2e + q2)] dr − [2pur + ρur(2e + q2)] dz} = 0.

Here z and r are the axial and radial coordinates, uz and ur are the components of the velocity vector of the gas
along z and r, respectively, q =

√
u2

r + u2
z, e = p/((k − 1)ρ) is the specific internal energy, and C is an arbitrary

closed contour bounding the area S.
The boundary conditions were the no-slip condition vn = 0 on the receiver walls ABCDEF and on the axis

of symmetry; the boundary condition on the line FMNK was the “soft” condition ∂vn/∂n = 0, which does not
affect the flow in the receiver because p0 � pa, where pa is the ambient pressure. At the initial time (t = 0), the
gas inside and outside the receiver is at rest [ur(0) = uz(0) = 0], and the values of p0 and pa are prescribed.

To solve the problem, we used the first-order numerical integration, which is based on the idea of using exact
solutions of equations with piecewise-constant data for constructing the difference scheme [10].

Figure 2 shows the results of numerical calculations of quasi-steady exhaustion mode stabilization with
different grids in the z and r directions (16× 4, 64× 16, and 256× 64) for actual conditions of model experiments:
nozzle-throat diameter dth = 15.2 mm, initial pressure in the receiver p0 = 4.84 MPa, and mean gradient of
pressure release 〈dp/dt〉 = 2 · 102 MPa/sec. The figure also shows the dependence ϕ(t) obtained by processing the
experimental curve p(t) by the semi-empirical method considered.
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Fig. 3. Experimental curves of pressure release in the receiver: x(t) for dth = 5 (1) and 7 mm (2);
f(t) for dth = 5 (3) and 7 mm (4).

Two setups were used for experimental validation of the method proposed. The layout of the first setup is
shown in Fig. 1. The nozzle was opened when the burndown plug left the nozzle through the cross section FF1 (see
Fig. 1) under the action of the pressure in the receiver. The plug material was the double-base propellant N whose
combustion products generated a given pressure in the receiver p0 and escaped through the nozzle after the plug
left the latter. The time of nozzle opening ∆t was estimated by the formula derived by integration of the equation
of plug motion (without allowance for the friction force)

∆t =
√

2ρml/p0 (
√

l + dth/4−
√

l ),

where ρm is the powder density and l is the plug length.
For conditions of the tests performed, we have ∆t ≈ 0.45 · 10−4 sec, which is an order of magnitude lower

than the time needed for stabilization of the quasi-steady exhaustion mode.
A comparison of results obtained by numerical calculations and by the semi-empirical method (Fig. 2) shows

that the method considered yields a fairly adequate approximation of the real flow rate G(t) in the course of
stabilization of the quasi-steady exhaustion mode, whereas the time of quasi-steady mode stabilization is somewhat
different (0.5–0.6 msec in the numerical calculations and 0.8–0.9 msec predicted by the semi-empirical method).
The characteristic time in Eq. (9) is tn = 0.29 msec.

The second setup is designed for determining the discharge coefficient of nozzles with different configurations.
It consists of an array of compressed gas holders, receiver, nozzle under study, electric pneumatic valve, and system
for measuring the pressure in the receiver. Compressed air is injected into the receiver up to a prescribed pressure p0;
when the valve is opened, the air from the receiver escapes through the nozzle into the atmosphere. The pressure-
release curve is registered by a transducer with the data recorded onto a storage oscillograph.

This setup does not allow determination of the stabilization time tn because of the nozzle-opening inertia,
but it is simple in operation and more convenient for serial tests.

Figure 3 shows the curves x(t) = p(t)/p0 for two nozzles with abrupt constriction of the flow; the nozzle-
throat diameters are 5.0 and 7.0 mm. The relative cross-sectional areas of the nozzle (nozzle unit) are Fth/Fch = 0.01
and 0.02, respectively. The same figure shows the functions f(t) for these nozzles. The scatter of points characterizes
the error of pressure measurement (approximately 2%). The tangent of the angle of inclination of the asymptotic
curves f(t) is correlated with the discharge coefficient ϕ0. Processing of experimental data by the technique described
above yields the discharge coefficients ϕ0 = 0.70 ± 0.04 (dth = 5.0 mm) and ϕ0 = 0.73 ± 0.03 (dth = 7.0 mm).
The calculations by the approximate formulas [10] yield the discharge coefficients ϕ0 = 0.738 and ϕ0 = 0.739,
respectively. The estimate for the stabilization time of the quasi-steady exhaustion mode for the conditions of the
tests performed (tch ≈ 10−2 sec) shows that tn � tch. Note, to obtain a quantitative estimate for tn by the method
considered, one has to use pressure transducers with eigenfrequencies above 50–100 kHz.
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Let us summarize the results of the present study.
1. An exponential dependence of the real flow rate of the gas from the receiver with abrupt opening of the

nozzle in the period of stabilization of the quasi-steady exhaustion mode was obtained by the method of asymptotic
expansions of solutions of singularly disturbed equations.

2. The adequacy of the resultant flow-rate dependence was obtained by numerically solving two-dimensional
gas-dynamic equations.

3. A semi-empirical method was proposed for determining the time of stabilization of quasi-steady exhaustion
from the receiver and the discharge coefficient of the nozzle with controlled accuracy.

4. The results of experiments on exhaustion of compressed air and combustion products of the powder N
from the receiver with sudden opening of the nozzle confirmed the possibility of using the method for practical
evaluation of the conditions of applicability of the quasi-steadiness hypothesis and for determining the discharge
coefficient of a nozzle with an arbitrary configuration.

The authors are grateful to A. I. Borodin for his assistance in numerical calculations.
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